A GROUNDWATER MODEL TO DETERMINE THE AREA WITHIN THE UPPER BIG BLUE NATURAL RESOURCES DISTRICT WHERE GROUNDWATER PUMPING HAS THE POTENTIAL TO INCREASE FLOW FROM THE PLATTE RIVER TO THE UNDERLYING AQUIFER BY AT LEAST 10 PERCENT OF THE VOLUME PUMPED OVER A 50-YEAR PERIOD

Prepared By
R.J. Bitner, P.E.
Upper Big Blue Natural Resources District
September 2005
ACKNOWLEDGMENTS

The following persons provided assistance with inputs and reviews that were incorporated into the model and final report:

_Courtney Hemenway, P.E._, Hemenway Groundwater Engineering, Inc., provided a peer review of the model development, model inputs, model application, and report to ensure that these components are developed in accordance with acceptable standards.

_Duane Woodward_, Hydrologist, Central Platte Natural Resources District, reviewed the model and inputs for consistency with COHYST standards. Duane also assisted with evaluating recent river bed conductance data that was incorporated into the model.

_Steve Peterson_, Hydrologist, U.S. Geological Survey, assisted with implementation of the EMSI\(^1\) GMS\(^2\) modeling techniques.

_Jim Cannia_, Nebraska Department of Natural Resources, reviewed the model and model inputs regarding suitability for determining hydrologic connectivity of streams with the aquifer.

_Marie Krausnick_, Upper Big Blue Natural Resources District, provided assistance with GIS mapping.

_Xun Hong Chen, Ph.D. and Mark Burhach, Ph.D._, University of Nebraska Conservation and Survey Division, provided Geoprobe electric logging, permeameter testing, and pump tests to estimate aquifer hydraulic conductivity and river bed conductance on the Platte River and Big Blue River.

_Larry Cast_, Geologist, reviewed test hole and irrigation well drilling logs to determine geologic and hydrologic properties of the layers used to define the aquifer.

_Rich Kern, P.E._, Hydrologist / Programmer, Nebraska Department of Natural Resources, provided computer programming of utilities to assist with database management, grouping geologic layer parameters, retrieving data from the DNR databases, and analysis of GMS - MODFLOW outputs.

_COHYST Modelers\(^3\)_ developed the COHYST Eastern Regional groundwater model from which this sub-regional model is derived.

---

\(^1\) EMSI is an acronym for “Environmental Modeling Systems, Inc.”

\(^2\) GMS is an acronym for “Groundwater Modeling System”.

\(^3\) COHYST is an acronym for “Cooperative Hydrology Study”.
The groundwater model discussed in this report was commissioned by the Upper Big Blue Natural Resources District for the purpose of estimating the location of areas within the Natural Resources District that have the potential to be hydrologically connected to base-flow streams. The groundwater model and modeling results, shown in this report, have been presented to the Natural Resources District Board, and have been approved for submittal to the Nebraska Department of Natural Resources.
September 29, 2005

NE-0010-05

Mr. Jay Bitner
District Engineer
Upper Big Blue Natural Resources District
105 Lincoln Avenue
York, NE 68467

Dear Jay:

Subject: Groundwater Model Review for the Upper Big Blue Natural Resources District (UBBNRD)

As you requested, Hemenway Groundwater Engineering, Inc. (HGE) is pleased to submit this letter documenting the consulting services provided for the UBBNRD regarding your ongoing groundwater model development. HGE’s Scope of Work (SOW) for consulting services was related to the review of the current groundwater computer model for the UBBNRD. The model is a sub-regional model of the area covered by the Eastern Model Unit (EMU) developed by the Nebraska Cooperative Hydrology Study (COHYST). The model utilizes the Groundwater Modeling System (GMS) pre- and post-processor modeling system and the United States Geological Survey (USGS) finite difference model MODFLOW 2000. The grids in the model are 1,320 feet by 1,320 feet or 40 acres per model grid, which is a refinement of the COHYST EMU model grid size of 2,640 feet by 2,640 feet. The focus of the UBBNRD model is to determine the depletion to the Platte River from wells, which represents 10 percent flow from the river after 50 years of well pumping. To determine the depletions, a baseline transient model was run without any wells pumping. Following the baseline run, the model was run numerous times with one well pumping at a new location at each model run. The depletions were calculated after each model run as a function of the distance of the well from the Platte River, and the 10 percent depletion line was mapped.

The services provided by HGE included reviewing the current UBBNRD groundwater model for “fatal flaws” and providing recommendations for improving and modifying the model to meet the intended purposes by the UBBNRD. HGE’s recommendations were accepted and implemented by UBBNRD in the current groundwater model. The UBBNRD provided additional studies and information, model refinements, and improvements to the current COHYST EMU groundwater model. With these revisions and improvements, the current UBBNRD groundwater model meets the industry standards for groundwater modeling practices.
HGE looks forward to the opportunity to work with you and the UBBNRD in the future. If you have any questions regarding this letter or HGE’s review of the UBBNRD groundwater model, please do not hesitate to contact me.

Sincerely,

Hemenway Groundwater Engineering, Inc.

[Courtney Hemenway
President]

HGE/UBBNRDGWMODELREVLET
**TABLE OF CONTENTS**

INTRODUCTION ............................................................................. 1

PURPOSE ......................................................................................... 1

CONCEPTUAL MODEL ................................................................. 1

GEOLOGIC AND HYDROSTRATIGRAPHIC UNITS ............................ 4

MODEL DESCRIPTION ................................................................. 5
  Model Grid ................................................................................. 5
  Modules ..................................................................................... 5
    River Module .......................................................................... 5
    Well Module .......................................................................... 6
    Recharge Module .................................................................. 7
    Evapotranspiration Module .................................................. 7
  Boundary Conditions ............................................................... 8
  Model Flow Simulation ........................................................... 9
  Flow Equation Solver ............................................................... 9
  Aquifer Characteristics ........................................................... 10
    Hydraulic Conductivity $K_x$ .................................................. 10
    Anisotropic Ratios ............................................................... 11
    Specific Yield $S_y$ ............................................................... 11
    Specific Storage $S_s$ ............................................................ 11

PRE-DEVELOPMENT PERIOD ........................................................ 12
  Mean Difference ....................................................................... 13
  Mean Absolute Difference .................................................... 13
  Root Mean Square Difference ................................................. 13

PRE-DEVELOPMENT MODEL - WITHOUT PUMPING ....................... 14

HYDROLOGICALLY CONNECTED AREA .......................................... 15
  10% / 50-Year Boundary Determination ................................... 18
INTRODUCTION

This report discusses development and application of a groundwater model for a region that lies within the boundary of the Cooperative Hydrology Study (COHYST) eastern regional groundwater model in Nebraska. The geographic area modeled is shown on Figure 1 and includes all, or portions of, Platte, Polk, York, Nance, Merrick, Hamilton, Clay, Nuckolls, Howard, Hall, and Adams Counties. The modeled area overlays portions of the Upper Big Blue, Central Platte, and Little Blue Natural Resources Districts. The total land surface within the model boundary is approximately 7,520 square miles (4.8 million acres).

PURPOSE

The purpose of this model is to provide a method for calculating the potential increase in the rate of flow from the Platte River to the underlying aquifer due to groundwater pumping near the Platte River within the Upper Big Blue Natural Resources District. The model is used to define a boundary encompassing the area within which a well pumping groundwater could increase flow from the Platte River to the underlying aquifer by an amount equal to, or greater than, 10 percent of the volume pumped over a period of 50 years. For purposes of determining whether or not a river basin is fully appropriated, the Nebraska Department of Natural Resources considers that wells within the 10 percent / 50-year boundary are hydrologically connected to the river.

CONCEPTUAL MODEL

The model boundaries are defined with a series of fixed flow arcs that specify flow into or out of the model, depending upon the direction and slope of the groundwater gradient at the boundary. The Platte River is defined with a series of river arcs which specify the river bed conductance, river bed thickness, and river stage. The model cells intersected by the river arcs are defined by the model as a series of point source river cells, each with its own conductance value. The model cells intersected by the fixed flow boundary arcs are defined by the model as a series of wells that are either source (injection) or sink (withdrawal), depending on whether the

---


5 Nebraska Department of Natural Resources, Proposed Rule pursuant to Neb. Rev. Stat. §46-713.
boundary flow is into or out of the model at that point. The amount of river to aquifer flow induced by pumping is tested with a single well, which is moved from cell to cell parallel to the Platte River, at varying distances from the river. Other streams within the model boundary, such as the Big Blue River and its tributaries, including the West Fork Big Blue River, Lincoln Creek, and Beaver Creek, are not included in the model. The bed conductances of these rivers and streams are very low, approximately 0.0079 ft²/day, and have minimal connectivity to the underlying aquifer and the Platte River. Areal sources and sinks included in this model are recharge from precipitation, and evapotranspiration from rooted plants located in wet meadows near the Platte River. The model geology is represented by five unconfined layers. The numerical flow model is based on the following basic assumptions:

• At the scale in which this model is constructed, flow in the aquifer obeys Darcy’s Law and mass and energy are conserved.

• Since the modeled fluid is groundwater, having a temperature in the range of 50 degrees Fahrenheit, the density and viscosity of water are constant over time and space.

• Parameters are uniform within each cell, and represent an estimate of their average value within the cell.

• The interchange of water between the aquifer and Platte River can be adequately simulated as one-dimensional flow through a discrete streambed layer. This conceptualization is appropriate over the scale at which this model is constructed.

• Hydraulic conductivity in the horizontal plane is isotropic; however, hydraulic conductivity in the vertical direction is not equal to hydraulic conductivity in the horizontal direction. The horizontal to vertical anisotropic ratio is assigned a value of 10 (i.e. horizontal hydraulic conductivity is ten times greater than vertical hydraulic conductivity), unless otherwise noted.

---

6 Xun Hong Chen, River Bed Conductance Studies - West Fork Big Blue River and Platte River in Nebraska, University of Nebraska Conservation and Survey Division, 2005.
GEOLOGIC AND HYDROSTRATIGRAPHIC UNITS

The model has five unconfined geologic layers. The layer definitions are consistent with those documented in the COHYST aquifer characterization report⁷. The model layers consist primarily of Quaternary deposits of Pleistocene alluvium, Pleistocene and Holocene loess, Holocene dune sand, and Holocene valley fill. Valley fill deposits are found along the Platte River and consist of gravel, sand, and silt. Alluvial deposits, which typically support high capacity wells, are found throughout the model area. In topographic bedrock highs these deposits are generally thinner, and produce lower yielding wells. Loess deposits are found throughout the model area, and the thickest deposits are located along the Platte River bluffs. The deposits become thinner as they approach the Platte River north of the loess bluffs. The Platte River bed contains a low permeability loess layer at about 10 to 20 feet below the current streambed surface⁸. The bedrock formation at the bottom of Layer 5 consists of shale, chalk, limestone, siltstone, and sandstone of Cretaceous age. These bedrock materials transmit very little water, and for modeling purposes are considered to be impermeable.

The model layers are numbered 1 through 5. Unit 1 is the top layer, and Unit 5 is the bottom layer. The layers used in this model are described as follows:

• Layer 1  Top layer consisting of upper Quaternary age silt and clay with some sand and gravel
• Layer 2  Middle Quaternary age sand and gravel
• Layer 3  Lower Quaternary age silt and clay with some sand and gravel
• Layer 4  Upper Tertiary age silt and clay with some sand and gravel
• Layer 5  Middle Tertiary age sand and gravel underlain with bedrock materials consisting of shale, chalk, limestone, siltstone, and sandstone


⁸ See geoprobe electric logs shown in Appendix B
MODEL DESCRIPTION

The groundwater model is a three-dimensional finite difference computer model developed around the MODFLOW®, Version 2000, groundwater modeling software enclosed within EMSI GMS¹⁰, Version 5.1. The GMS software includes a pre-processor to read input data and place it in the model according to MODFLOW format requirements. GMS also does some post-processing of output in both graphical and numerical forms. The units of measure used in this model include feet for linear measure, days for time, feet per day for velocity, cubic feet for volume, and cubic feet per day for flow rate.

Model Grid

The model grid has 120,330 cells per layer. Each cell measures 1,320 feet per side, and covers an area of approximately 40 acres. Model feature locations are geo-referenced in the horizontal plane to the Nebraska State Plane Coordinate System, NAD 83 - feet. Top and bottom elevations of each layer are referenced to USGS mean sea level datum.

Modules

The MODFLOW software is modular in the sense that various modules (packages) can be activated for any particular modeling situation. The modules used in this model include river, well, recharge, and evapotranspiration.

River Module

The Platte River is simulated in this model as a series of arcs, connected at their upstream and downstream ends at nodes, with a combined length of 87.8 miles. Attributes associated with the arcs and nodes specify the river bed conductance, bottom of river bed elevation, and river stage. The hydrologic properties (K, S₂) of model cells identified as river cells (cells crossed by river arcs), and located in Layer 1, are adjusted to match the hydrologic properties of the underlying cell in Layer 2. In this way there is a direct connection of the Platte River bed to the aquifer, and the only limitation on inter-connectivity between the river bed and underlying

---


¹⁰ Groundwater Modeling System (GMS), Environmental Modeling Systems, Inc. (EMSI), Park City, Utah.
aquifer is river bed conductance. River bed conductance is a function of river bed length, width, bed thickness, and hydraulic conductivity. MODFLOW uses the following equation\(^\text{11}\) to calculate bed conductance:

\[
C = \frac{k \times L \times W}{M}
\]

For each river arc “n”:
- \(C_n\) = streambed conductance (ft\(^2\)/d/ft)
- \(k_n\) = vertical hydraulic conductivity of the streambed (ft/d)
- \(L_n\) = length of the streambed (ft)
- \(W_n\) = width of streambed (ft)
- \(M_n\) = thickness of streambed (ft)

For this model, the value of river bed conductance at each river arc is set at the same value as used in the COHYST Eastern Regional Model, except where detailed testing indicates the value should be different. The values established by testing were determined based on geoprobe and permeameter tests conducted by the University of Nebraska Conservation and Survey Division. Geoprobe electric logs, hydraulic conductivities, and bed conductance calculations are shown in Appendix B of this report. Platte River bed conductances used in this model are set at 11 ft\(^2\)/d/ft in reaches where testing is completed. River bed conductances in the remaining reaches vary from 20 ft\(^2\)/d/ft to 30 ft\(^2\)/d/ft.

**Well Module**

The potential increase in induced flow from the Platte River to the underlying aquifer, due to groundwater pumping near the Platte River, is tested with this model by placing a simulated pumping well at alternate cell locations, operating the model for a 50-year period at each location, and calculating the change in the water budget when compared with the baseline condition. The initial baseline condition is simulated with no pumping well.

For these simulations, pumping is assumed to be from Layer 2, the volume of water

pumped is set at 160 acre-feet per year, and the pumping rate is set to be continuous at 19,094.79 cubic feet per day. This volume of groundwater is approximately the average amount of water pumped in one year to irrigate a quarter section of crop. A gravity irrigated system would pump slightly more volume on average, and a pivot irrigated system would pump slightly less volume on average, based on the District’s records of irrigation water use. Although irrigation systems typically operate at a higher pumping rate, are operated on an intermittent pumping schedule, and only operate for a few months per year, a continuous lower pumping rate is used to simplify the modeling process. The volume of water pumped per year would be the same with either continuous or transient pumping schedules. The continuous pumping schedule is not expected to give significantly different results than a transient pumping schedule would yield. Some comparisons of continuous and transient pumping were made to confirm this conclusion.

Recharge Module

Recharge is modeled as an areal source of inflow to the aquifer, and includes the amount of precipitation that percolates from the surface through Layer 1 into Layer 2. The recharge rate used in this model, in feet per day, is interpolated from the COHYST Eastern Model, pre-development period, scatter point data set. The scatter point file is derived from the COHYST EMU model and interpolated to this model’s 2-dimensional grid. The 2D data set is imported to the MODFLOW model recharge array. The recharge point of application option is set to the highest active layer at each grid cell. For this model, the minimum recharge rate is 0.000222 feet per day (0.97 inches per year), and the maximum rate is 0.000557 feet per day (2.44 inches per year). The mean rate is 0.000222 feet per day (0.972 inches per year). The recharge rate is held constant throughout the modeled time period, and does not vary from stress period to stress period.

Evapotranspiration Module

Evapotranspiration (ET) is modeled as the amount of groundwater extracted from the aquifer by rooted vegetation, and then evaporated from the plant canopy to the atmosphere external from the model. For this model ET is considered to be an areal sink; i.e., outflow from the model space. The ET rate data set used in this model is interpolated from the COHYST Eastern Model pre-development data set. A scatter point file is produced from the COHYST
EMU model and interpolated to this model’s 2-dimensional grid. The 2D data set is then imported to the MODFLOW model ET array. The point of ET withdrawal is the top of Layer 1, and the extinction depth is set at a specified depth (nominally 7 feet) below the top of Layer 1. For this sub-regional model, the minimum ET rate is 0.00 feet per day, and the maximum rate is 0.002993 feet per day (13.1 inches per year). The rate of evapotranspiration is held constant throughout the modeled time period, and does not vary from stress period to stress period.

Wetland areas, mostly located near the Platte River, are treated as groundwater sinks, where groundwater can be removed from the model space by plant evapotranspiration. The evapotranspiration rate, extinction depth, and active ET layer are interpolated to the model 2D grid from COHYST EMU scatter point data sets. Areas that have potential for significant evapotranspiration are selected using 1997 land use mapping data for wetlands (Dappen and Tooze, 2001), and also by defining areas where the depth to groundwater is on average 7 feet or less below land surface, according to USGS long-term depth to water data (U.S. Geological Survey National Water Information System, 1999).

**Boundary Conditions**

The model is bounded vertically by land surface at the top of Layer 1 and bedrock at the bottom of Layer 5. The model is bounded horizontally by fixed flow boundaries. A fixed flow boundary is a boundary where the flow is specified prior to the simulation and held constant throughout the simulation (McDonald and Harbaugh, 1988). At fixed flow boundaries the simulated water level can change, but flow across the boundary does not change. The northern model boundary is aligned with the Loup River and the southern boundary is aligned with the Little Blue River and southern boundary of Adams County. The eastern model boundary is aligned with the eastern boundaries of York and Polk Counties, and the western boundary is aligned with the western boundaries of Hall and Adams Counties, as shown on Figure 1. The rate of flow through each model boundary, in cubic feet per day, is calculated using the Darcy Equation.
For each boundary arc “n”

\[ Q_n = k_n \times i_n \times A_n \]

- \( Q_n \) = fixed rate of flow through the boundary, ft\(^3\)/d
- \( k_n \) = weighted horizontal hydraulic conductivity, ft/d
- \( i_n \) = gradient of the 1950 groundwater surface perpendicular to the boundary flow plane, ft/ft
- \( A_n \) = cross sectional area of the flow plane at the boundary, ft\(^2\)

Each layer’s thickness determines the relative weight given to each layer’s hydraulic conductivity for this calculation. The calculated boundary flow is distributed evenly over the saturated thickness between the groundwater level and the base of the aquifer at each boundary arc. Appendix A contains calculations and supporting documents used to compute boundary fixed flows. A boundary flow is not computed for Layer 1, since it is a silty clay layer generally representing the unsaturated zone which overlays the saturated zone.

**Model Flow Simulation**

The MODFLOW software has several packages (BCF, LPF, and HUF) available for calculating conductance coefficients and groundwater storage parameters to be used in the finite-difference equations that calculate flow between cells. The Layer Property Flow (LPF) package is selected as the internal flow calculation methodology for this model. The LPF package reads input data for hydraulic conductivity and global top and bottom elevation data for each cell (layer). Transmissivity is calculated for each cell at the beginning of each iteration of the flow equation matrix solution process. The LPF package calculates leakance between layers using the vertical hydraulic conductivity, based on estimated anisotropic ratio \( K_v/K_h \), and distance between nodes obtained from global elevation data.

**Flow Equation Solver**

The MODFLOW software has several linear differential equation “solver” packages (SIP1, PCG2, SCR1, and GMG) available. For this model, the pre-conditioned conjugate-
gradient\textsuperscript{12} (PCG2) package is selected to solve the linear finite difference equation matrix. For a transient groundwater model, the solution matrix is expressed as shown in EQ. 3, where $[A]$ is the coefficient matrix, $[x]$ is a vector of hydraulic heads, and $[b]$ is a vector of defined flows, associated with head-dependent boundary conditions and storage terms at each grid cell.

\text{EQ. 3} \quad [A] \cdot [x] = [b]

The matrix is solved iteratively until both head-change and residual convergence criteria are met. The convergence criteria are too large if the global groundwater flow budget discrepancy is unacceptably large. In general, a global budget discrepancy less than one percent is considered acceptable. Convergence criteria for this model, specified in the input options for the PCG2 module, are 0.5 foot for heads and 10.0 ft\textsuperscript{3}/d for flow residual. The iteration parameters are not specified, but rather are calculated internally.

**Aquifer Characteristics**

Aquifer properties are input for each layer, including horizontal hydraulic conductivity ($K_x$), vertical anisotropic ratio ($K_x/K_y$) or vertical hydraulic conductivity $K_y$, horizontal anisotropic ratio ($K_x/K_z$), Specific Storage ($S_z$), and specific yield ($S_y$). The procedures used to estimate parameter values for each layer are described in the COHYST hydrostratigraphic Units Characterization Report\textsuperscript{13}.

**Hydraulic Conductivity $K_x$**

Test well logs, interpreted by Reed and Piskin\textsuperscript{14}, are the basis for horizontal hydraulic conductivity values used in this groundwater model and the COHYST eastern regional model. The interpreted values for each layer are weighted according to layer thickness, and the weighted average value of $K_x$ is then determined for each model layer at each test well location. The


\textsuperscript{14} E. C. Reed and R. Piskin, unpublished report, University of Nebraska Conservation and Survey Division.
process used to weight the values is written in a computer code called Geoparm\textsuperscript{15}. A 2D data set is then created by interpolating the computed values. The 2D data set is then used to set the MODFLOW array of values for each layer.

**Anisotropic Ratios**

As described previously in this report, the vertical anisotropic ratio, $K_x/K_y$, is estimated to be 10.0 for all layers at each grid cell, unless pump testing indicates a different ratio, and the horizontal anisotropic ratio, $K_y/K_x$, is estimated to be 1.0.

**Specific Yield $S_y$**

Data compiled by USGS, and summarized by Reed and Piskin, is the basis for specific yield values used in this groundwater model and the COHYST eastern regional model. As discussed in the Hydrostratigraphic Units Report, specific yield values are interpreted for each layer material classification. The interpreted values are then weighted using the Geoparm program to establish specific yield for each model layer at each test well location. The computed values are then interpolated to the model’s 2D grid for each model layer. The 2D data sets are then used to set the MODFLOW array values for each layer.

**Specific Storage $S_s$**

All layers in this model are considered to be unconfined; however, the LPF simulation options available in MODFLOW are either confined or convertible. The convertible option is selected for all layers, and the specific storage for all layers, except Layer 1, is set to $2.1\times10^{-3}$; this value is based on discussions with UNL Conservation and Survey\textsuperscript{16} and takes into account low potential for changes in aquifer storage due to height of overburden or changes in hydraulic head. The specific storage for Layer 1 is set to 0.16, the estimated specific yield, since this layer is always unconfined, and cannot be converted to confined.

Specific storage is the volume of water per unit volume of *confined* saturated aquifer that is absorbed, or expelled, due to changes in pressure within the aquifer. Overburden tends to

\textsuperscript{15} R. Kern, *Nebraska Cooperative Hydrology Study Computer Program Documentation GeoParam - Hydraulic Conductivity from Well Logs*, Nebraska Department of Natural Resources.

\textsuperscript{16} Personal communication with Xun Hong Chen, University of Nebraska, Conservation and Survey Division.
consolidate the aquifer (reduce storage volume), and hydraulic pressure head tends to offset consolidation (increase storage volume).

Storativity for a *confined* layer is equal to the product of specific storage and layer thickness. Storativity for an *unconfined* layer is equal to the specific yield plus the product of groundwater depth and specific storage.

**PRE-DEVELOPMENT PERIOD**

Geologic and hydrogeologic layer parameters used in this model are derived from calibrated COHYST eastern regional model (EMU) data. The EMU was calibrated for the pre-groundwater development period by varying and adjusting evapotranspiration, recharge, hydraulic conductivity, properties at horizontal flow boundaries, and streambed conductances. For this model the evapotranspiration, recharge and horizontal hydraulic conductivity are interpolated from EMU scatter point files. Streambed conductances and vertical hydraulic conductivities are adjusted at some locations based on recent testing conducted by the University of Nebraska Conservation and Survey. Fixed flows at boundaries are computed for each boundary arc as previously described. Observed water levels, measured between 1946 and 1955, are used to establish the starting head values.

Observed water levels used to establish starting heads are from a period of relatively stable conditions. Observation points were selected as being representative of pre-groundwater development, and only the most reliable data within 4-mile by 4-mile grid cells were selected (by COHYST modelers) for EMU calibration. This selection process prevents a cluster of closely spaced observation wells from dominating the calibration process. After screening values in all of the 4 by 4-mile cells, a few points that appeared to have large errors in location or land-surface elevation were excluded from the calibration data set. The starting heads file for this model is based on a sub-set of the EMU calibration data set that contains 209 of the observation points.

The ability of this model to represent a 50-year period of pre-groundwater development conditions is evaluated by comparing the percent discrepancy in global groundwater flow budget, as well as the mean difference, mean absolute difference, and root mean square of the differences between observed pre-development groundwater levels at the beginning and end of a 50-year computer run without well development.
Mean Difference

The mean difference (MD) of observed and simulated water levels is defined in EQ.4. The variable \( h_0 \) is the observed water level and \( h_s \) is the simulated water level at each of the \( n \) observation points. The mean difference is used here as a measure of overall bias in calibration, and as such should be close to zero at calibration.

\[
\text{MD} = \frac{1}{n} \sum_{i=1}^{n} (h_{0i} - h_{si})
\]

Mean Absolute Difference

The mean absolute difference (MAD) of observed and simulated water levels is defined in EQ.5. The MAD is used here to evaluate the overall model calibration, since positive and negative differences do not cancel each other. All differences are given an equal weight, so a few measurements with large differences will not dominate the result.

\[
\text{MAD} = \frac{1}{n} \sum_{i=1}^{n} |h_{0i} - h_{si}|
\]

MODFLOW calculates the water level changes as draw-downs, therefore positive changes are declines and negative changes are rises.

Root Mean Square Difference

The root mean square difference (RMSD), also referred to as the quadratic mean, is defined in EQ. 6. This statistic is the standard deviation of the differences between observed groundwater levels and groundwater levels produced by the model, for the pre-development period. Assuming that the differences between observed and modeled water levels are normally distributed about the mean difference, the standard deviation gives a measure for determining the range within which the differences can be expected to occur. Statistically, 68.27% of the differences are expected to occur within \( \text{MD} \pm \text{RMSD} \), and 95.45% of the differences are expected to occur within \( \text{MD} \pm (2)\text{(RMSD)} \).

\[
\text{RMSD} = \left[ \frac{1}{n} \sum_{i=1}^{n} (h_{si} - h_{0i})^2 \right]^{0.5}
\]
PRE-DEVELOPMENT MODEL - WITHOUT PUMPING

Starting heads for the pre-development model are obtained by interpolating the observed pre-development water levels to the model 2D grid, which is then imported to the MODFLOW model starting head data set. The observation data points are also imported to the model so that heads computed by the model can be compared to the starting heads for the purpose of evaluating groundwater level changes over the 50-year period. Figures 2 and 3 show the locations of water level observation points, water level contours, and statistical variation at each observation point for the starting heads and 50-year model run. Statistical variations are shown in 10 feet increments; green indicates variation from 0 to 10 feet, yellow indicates variation from 10 to 20 feet, and red indicates variation from 20 to 30 feet. If the indicator is above the line, the computed water level is higher than observed, and if the indicator is below the line the computed water level is lower than observed at that observation point. The mean difference between observed and interpolated water levels, for both starting heads and 50-year model run, is 0.240 feet, the mean absolute difference is 1.376 feet, and the root mean square difference is 2.235 feet. Statistically it can be expected that approximately 95% of the differences between observed and computed water levels will occur within ± 2.235 feet of the mean difference.

The global groundwater inflow and outflow budgets, without well development, are shown in Tables 1 and 2 for the 50-year model run.

**TABLE 1**
MODEL INFLOW VOLUMETRIC BUDGET

<table>
<thead>
<tr>
<th>Inflow From</th>
<th>Inflow Volume (KAF)</th>
<th>Inflow Rate (KAF / Yr.)</th>
<th>Percent of Inflow (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Storage</td>
<td>19,088</td>
<td>382</td>
<td>52.1</td>
</tr>
<tr>
<td>Fixed Flow Boundary</td>
<td>2,324</td>
<td>46</td>
<td>6.4</td>
</tr>
<tr>
<td>Platte River</td>
<td>4,388</td>
<td>88</td>
<td>12.0</td>
</tr>
<tr>
<td>Recharge</td>
<td>10,781</td>
<td>216</td>
<td>29.5</td>
</tr>
<tr>
<td>Total Inflow</td>
<td>36,580</td>
<td>732</td>
<td>100</td>
</tr>
</tbody>
</table>
For the 50-year no well development scenario, the model calculates flow from the Platte River to the underlying aquifer at an average rate of 86 acre-feet per year within the model boundaries. This river to aquifer flow, without pumping, is the baseline for computing induced river to aquifer flow due to groundwater pumping. The global groundwater flow budget discrepancy is less than 0.01 percent.

**HYDROLOGICALLY CONNECTED AREA**

The portion of the Upper Big Blue Natural Resources District that is considered to be “hydrologically connected” to the Platte River, is that area contained between the Platte River, the Upper Big Blue NRD boundary, and the 10% / 50 year line. Groundwater pumping wells contained within this area are determined by the model to have the potential for inducing additional flow from the Platte River to the underlying aquifer by an amount of at least 10 percent of the volume pumped over a 50-year period. The increase in flow from the river to the aquifer is presented in terms of the “global” model volumetric budget; i.e., the water pumped from the well causes an increase in the mass of water moving from the river to the aquifer, but does not address the transport issues, such as source path or age of water pumped.

A baseline model run, without a pumping well, establishes the volume of water moving from the river to the aquifer due to non-pumping gradients. Independent model runs are then made for each new location of the single pumping well. The well is placed at the center of a grid
FIGURE 2
PRE-DEVELOPMENT G.W. LEVELS
STARTING HEADS
FIGURE 3
FIFTY YEAR MODEL G.W. LEVELS
CHANGES AT OBSERVATION WELLS
cell, and the well screen is assumed to be in Layer 2 for each run. The global volumetric budgets at the end of the 50th stress period are compared with and without pumping, and the difference in river flow into the model is used to determine the volume of water induced from the river to the aquifer due to pumping.

**10% / 50-Year Boundary Determination**

The 10% / 50-year boundary is determined by evaluating groundwater pumping along transects, spaced approximately 1 mile apart and perpendicular to the Platte River. Transect cells that lie on either side of the boundary line are interpolated linearly to determine the actual coordinates of the boundary line on each transect. Table 3 is a summary of coordinates used to establish the 10 / 50 boundary line within the Upper Big Blue NRD. Figures 4 and 5 are graphical representations of the 10% / 50-year boundary line location.

**TABLE 3**

**10% / 50-YEAR BOUNDARY WITHIN THE UPPER BIG BLUE NRD**

**STATE PLANE COORDINATES**

<table>
<thead>
<tr>
<th>Easting</th>
<th>Northing</th>
</tr>
</thead>
<tbody>
<tr>
<td>2115914.5307</td>
<td>368243.7495</td>
</tr>
<tr>
<td>2119524.3678</td>
<td>373861.1446</td>
</tr>
<tr>
<td>2122067.5150</td>
<td>377912.3125</td>
</tr>
<tr>
<td>2124670.4467</td>
<td>383220.1545</td>
</tr>
<tr>
<td>2128158.4452</td>
<td>387639.9242</td>
</tr>
<tr>
<td>2132229.2680</td>
<td>391476.8695</td>
</tr>
<tr>
<td>2135624.8026</td>
<td>395989.1030</td>
</tr>
<tr>
<td>2139012.1417</td>
<td>400512.5376</td>
</tr>
<tr>
<td>2140957.5416</td>
<td>402519.5190</td>
</tr>
<tr>
<td>2145105.3989</td>
<td>406279.4298</td>
</tr>
<tr>
<td>2149493.4078</td>
<td>411118.6532</td>
</tr>
<tr>
<td>2153212.8089</td>
<td>415307.0203</td>
</tr>
</tbody>
</table>

---

17 Coordinate system is North American Datum, 1983, Nebraska State Plane, Feet.
FIGURE 4
10% / 50-YEAR LINE PLATTE RIVER
HALL, HAMILTON AND POLK COUNTIES
FIGURE 5
10% / 50-YEAR LINE PLATTE RIVER
WITHIN THE UPPER BIG BLUE NRD BOUNDARY
APPENDIX A
MODEL BOUNDARY
FIXED FLOW CALCULATIONS
<table>
<thead>
<tr>
<th>Boundary Arc No.</th>
<th>Gradient Crossing Boundary (ft./ft.)</th>
<th>Gradient Angle Perpendicular To Boundary (deg)</th>
<th>Weighted Hyd. Cond. At Boundary (ft./d)</th>
<th>Weighted G.W. Velocity At Boundary (ft./d)</th>
<th>1950 G.W. Level - Layer 5 Boundary Elevation (ft.&gt;msl)</th>
<th>Bottom Elevation (ft.&gt;msl)</th>
<th>Saturated Groundwater Thickness At Boundary (ft.)</th>
<th>Boundary Arc Length (ft.)</th>
<th>Boundary Flow Area (ft.2)</th>
<th>Boundary Flow (ft.3/d)</th>
</tr>
</thead>
<tbody>
<tr>
<td>80</td>
<td>-0.000869</td>
<td>90</td>
<td>0.000000</td>
<td>44.3</td>
<td>0.000</td>
<td>1880.0</td>
<td>1660.4</td>
<td>219.6</td>
<td>46,017</td>
<td>10,105,333</td>
</tr>
<tr>
<td>38</td>
<td>-0.00208</td>
<td>90</td>
<td>0.000000</td>
<td>69.6</td>
<td>0.000</td>
<td>1833.0</td>
<td>1589.0</td>
<td>244.0</td>
<td>28,340</td>
<td>6,914,960</td>
</tr>
<tr>
<td>39</td>
<td>-0.00208</td>
<td>0</td>
<td>-0.00208</td>
<td>54.4</td>
<td>-0.113</td>
<td>1805.0</td>
<td>1557.6</td>
<td>247.4</td>
<td>27,847</td>
<td>6,889,348</td>
</tr>
<tr>
<td>82</td>
<td>-0.00129</td>
<td>90</td>
<td>0.000000</td>
<td>59.8</td>
<td>0.000</td>
<td>1775.0</td>
<td>1551.3</td>
<td>223.7</td>
<td>41,096</td>
<td>9,193,175</td>
</tr>
<tr>
<td>23</td>
<td>-0.00089</td>
<td>90</td>
<td>0.000000</td>
<td>109.5</td>
<td>0.000</td>
<td>1740.0</td>
<td>1587.2</td>
<td>152.8</td>
<td>16,903</td>
<td>2,582,778</td>
</tr>
<tr>
<td>40</td>
<td>-0.000968</td>
<td>90</td>
<td>0.000000</td>
<td>84.0</td>
<td>0.000</td>
<td>1728.0</td>
<td>1600.4</td>
<td>127.6</td>
<td>30,987</td>
<td>3,953,941</td>
</tr>
<tr>
<td>41</td>
<td>-0.002924</td>
<td>72</td>
<td>-0.000904</td>
<td>144.8</td>
<td>-0.131</td>
<td>1680.0</td>
<td>1575.0</td>
<td>105.0</td>
<td>24,486</td>
<td>2,571,030</td>
</tr>
<tr>
<td>1</td>
<td>-0.002000</td>
<td>35</td>
<td>-0.001638</td>
<td>192.1</td>
<td>-0.315</td>
<td>1650.0</td>
<td>1566.5</td>
<td>83.5</td>
<td>24,920</td>
<td>2,080,820</td>
</tr>
<tr>
<td>42</td>
<td>0.001481</td>
<td>24</td>
<td>0.001353</td>
<td>93.3</td>
<td>0.126</td>
<td>1660.0</td>
<td>1562.9</td>
<td>97.1</td>
<td>35,838</td>
<td>3,479,870</td>
</tr>
<tr>
<td>43</td>
<td>0.002000</td>
<td>33</td>
<td>0.001677</td>
<td>82.0</td>
<td>0.138</td>
<td>1632.0</td>
<td>1467.0</td>
<td>165.0</td>
<td>35,201</td>
<td>5,808,165</td>
</tr>
<tr>
<td>36</td>
<td>0.002105</td>
<td>67</td>
<td>0.000822</td>
<td>94.2</td>
<td>0.077</td>
<td>1600.0</td>
<td>1410.6</td>
<td>189.4</td>
<td>31,263</td>
<td>5,921,212</td>
</tr>
</tbody>
</table>

Total Estimated 1950 Boundary Flow = -73,898
<table>
<thead>
<tr>
<th>Boundary Arc No.</th>
<th>Gradient Crossing Boundary (ft./ft.)</th>
<th>Gradient Angle Perpendicular To Boundary (deg)</th>
<th>Weighted Hyd. Cond. Boundary (ft./d)</th>
<th>Weighted G.W. Velocity At Boundary (ft./d)</th>
<th>1950 Bottom Groundwater Elevation (ft.&gt;msl)</th>
<th>Layer 5 Saturation Thickness At Boundary (ft.)</th>
<th>Boundary Arc Length (ft.)</th>
<th>Boundary Flow Area (ft.2)</th>
<th>Boundary Flow (ft.3/d)</th>
</tr>
</thead>
<tbody>
<tr>
<td>79</td>
<td>-0.002609</td>
<td>54</td>
<td>-0.001534</td>
<td>34.9</td>
<td>-0.054</td>
<td>1910.0</td>
<td>64,788</td>
<td>13,715,620</td>
<td>-734,063</td>
</tr>
<tr>
<td>66</td>
<td>-0.001696</td>
<td>49</td>
<td>-0.001113</td>
<td>178.6</td>
<td>-0.199</td>
<td>1735.0</td>
<td>30,975</td>
<td>1,477,508</td>
<td>-293,616</td>
</tr>
<tr>
<td>67</td>
<td>-0.001885</td>
<td>70</td>
<td>-0.000645</td>
<td>54.3</td>
<td>-0.035</td>
<td>1790.0</td>
<td>46,543</td>
<td>7,200,202</td>
<td>-252,062</td>
</tr>
<tr>
<td>78</td>
<td>-0.002924</td>
<td>0</td>
<td>0.000000</td>
<td>36.2</td>
<td>0.000</td>
<td>1775.0</td>
<td>9,834</td>
<td>1,639,328</td>
<td>0</td>
</tr>
<tr>
<td>49</td>
<td>-0.002924</td>
<td>0</td>
<td>0.000000</td>
<td>19.3</td>
<td>0.000</td>
<td>1765.0</td>
<td>10,939</td>
<td>1,684,606</td>
<td>0</td>
</tr>
<tr>
<td>50</td>
<td>-0.002924</td>
<td>26</td>
<td>-0.002628</td>
<td>11.1</td>
<td>-0.029</td>
<td>1750.0</td>
<td>18,572</td>
<td>2,692,940</td>
<td>-78,557</td>
</tr>
<tr>
<td>75</td>
<td>-0.002924</td>
<td>26</td>
<td>-0.002628</td>
<td>18.7</td>
<td>-0.049</td>
<td>1730.0</td>
<td>19,537</td>
<td>1,908,708</td>
<td>-93,803</td>
</tr>
<tr>
<td>73</td>
<td>-0.001571</td>
<td>51</td>
<td>-0.000989</td>
<td>21.5</td>
<td>-0.021</td>
<td>1475.0</td>
<td>37,584</td>
<td>3,220,949</td>
<td>-966,028</td>
</tr>
<tr>
<td>74</td>
<td>-0.001571</td>
<td>51</td>
<td>-0.000989</td>
<td>18.9</td>
<td>-0.019</td>
<td>1445.0</td>
<td>31,526</td>
<td>2,080,716</td>
<td>-44,228</td>
</tr>
</tbody>
</table>

Total Estimated 1950 Boundary Flow = -5,728,601
<table>
<thead>
<tr>
<th>Boundary Arc No.</th>
<th>Gradient Across Boundary (ft./ft.)</th>
<th>Gradient Perpendicular To Boundary (deg)</th>
<th>Weighted Hyd. Cond. At Boundary (ft./d)</th>
<th>Weighted G.W. Velocity At Boundary (ft./d)</th>
<th>1950 Groundwater Level - Layer 5 (ft.&gt;msl)</th>
<th>Bottom Layer 5 Elevation (ft.&gt;msl)</th>
<th>Saturated Thickness At Boundary (ft.)</th>
<th>Boundary Arc Length (ft.)</th>
<th>Boundary Flow Area (ft.2)</th>
<th>Boundary Flow (ft.3/d)</th>
</tr>
</thead>
<tbody>
<tr>
<td>27</td>
<td>-0.001333</td>
<td>34</td>
<td>-0.001105</td>
<td>13.3</td>
<td>-0.015</td>
<td>1440.0</td>
<td>1323.2</td>
<td>116.8</td>
<td>11,533</td>
<td>1,347,054</td>
</tr>
<tr>
<td>1</td>
<td>-0.001097</td>
<td>59</td>
<td>-0.000565</td>
<td>23.8</td>
<td>-0.013</td>
<td>1443.0</td>
<td>1318.4</td>
<td>124.6</td>
<td>9,800</td>
<td>1,220,753</td>
</tr>
<tr>
<td>5</td>
<td>-0.001296</td>
<td>81</td>
<td>-0.000203</td>
<td>22.8</td>
<td>-0.005</td>
<td>1455.0</td>
<td>1304.0</td>
<td>151.0</td>
<td>15,820</td>
<td>2,388,820</td>
</tr>
<tr>
<td>2</td>
<td>-0.001296</td>
<td>81</td>
<td>-0.000203</td>
<td>14.0</td>
<td>-0.003</td>
<td>1480.0</td>
<td>1298.4</td>
<td>181.6</td>
<td>23,550</td>
<td>4,276,680</td>
</tr>
<tr>
<td>3</td>
<td>-0.002455</td>
<td>41</td>
<td>-0.001853</td>
<td>12.8</td>
<td>-0.024</td>
<td>1487.0</td>
<td>1302.1</td>
<td>184.9</td>
<td>26,940</td>
<td>4,981,206</td>
</tr>
<tr>
<td>4</td>
<td>0.002261</td>
<td>0</td>
<td>0.000000</td>
<td>20.7</td>
<td>0.000</td>
<td>1555.0</td>
<td>1260.0</td>
<td>295.0</td>
<td>51,610</td>
<td>15,224,950</td>
</tr>
<tr>
<td>6</td>
<td>-0.002665</td>
<td>75</td>
<td>-0.000690</td>
<td>21.4</td>
<td>-0.015</td>
<td>1570.0</td>
<td>1207.1</td>
<td>362.9</td>
<td>33,086</td>
<td>12,006,909</td>
</tr>
<tr>
<td>19</td>
<td>-0.001964</td>
<td>50</td>
<td>-0.001262</td>
<td>31.6</td>
<td>-0.040</td>
<td>1505.0</td>
<td>1206.0</td>
<td>299.0</td>
<td>26,280</td>
<td>7,857,720</td>
</tr>
<tr>
<td>18</td>
<td>-0.001399</td>
<td>29</td>
<td>-0.001224</td>
<td>35.8</td>
<td>-0.044</td>
<td>1485.0</td>
<td>1210.9</td>
<td>274.1</td>
<td>34,070</td>
<td>9,338,587</td>
</tr>
<tr>
<td>17</td>
<td>-0.001399</td>
<td>29</td>
<td>-0.001224</td>
<td>52.3</td>
<td>-0.064</td>
<td>1473.0</td>
<td>1191.8</td>
<td>281.2</td>
<td>8,860</td>
<td>2,491,432</td>
</tr>
<tr>
<td>25</td>
<td>-0.001399</td>
<td>29</td>
<td>-0.001224</td>
<td>32.8</td>
<td>-0.040</td>
<td>1465.0</td>
<td>1267.9</td>
<td>197.1</td>
<td>24,300</td>
<td>4,789,530</td>
</tr>
<tr>
<td>16</td>
<td>-0.001565</td>
<td>74</td>
<td>-0.000431</td>
<td>24.3</td>
<td>-0.010</td>
<td>1472.0</td>
<td>1318.6</td>
<td>153.4</td>
<td>18,560</td>
<td>2,847,104</td>
</tr>
<tr>
<td>15</td>
<td>-0.001565</td>
<td>74</td>
<td>-0.000431</td>
<td>62.0</td>
<td>-0.027</td>
<td>1500.0</td>
<td>1318.3</td>
<td>181.7</td>
<td>19,950</td>
<td>3,624,915</td>
</tr>
<tr>
<td>14</td>
<td>-0.001565</td>
<td>74</td>
<td>-0.000431</td>
<td>124.9</td>
<td>-0.054</td>
<td>1520.0</td>
<td>1310.1</td>
<td>209.9</td>
<td>13,430</td>
<td>2,818,957</td>
</tr>
<tr>
<td>13</td>
<td>-0.001565</td>
<td>74</td>
<td>-0.000431</td>
<td>131.8</td>
<td>-0.057</td>
<td>1540.0</td>
<td>1308.8</td>
<td>231.2</td>
<td>12,850</td>
<td>2,970,920</td>
</tr>
<tr>
<td>12</td>
<td>-0.001565</td>
<td>74</td>
<td>-0.000431</td>
<td>138.2</td>
<td>-0.060</td>
<td>1552.0</td>
<td>1328.8</td>
<td>223.2</td>
<td>10,080</td>
<td>2,249,856</td>
</tr>
<tr>
<td>11</td>
<td>-0.001565</td>
<td>74</td>
<td>-0.000431</td>
<td>100.4</td>
<td>-0.043</td>
<td>1570.0</td>
<td>1371.8</td>
<td>198.2</td>
<td>13,820</td>
<td>2,739,124</td>
</tr>
<tr>
<td>10</td>
<td>-0.001565</td>
<td>74</td>
<td>-0.000431</td>
<td>52.5</td>
<td>-0.023</td>
<td>1590.0</td>
<td>1409.6</td>
<td>180.4</td>
<td>8,470</td>
<td>1,527,988</td>
</tr>
<tr>
<td>9</td>
<td>-0.001565</td>
<td>90</td>
<td>0.000000</td>
<td>45.2</td>
<td>0.000</td>
<td>1600.0</td>
<td>1425.0</td>
<td>175.0</td>
<td>5,450</td>
<td>953,750</td>
</tr>
<tr>
<td>8</td>
<td>-0.001565</td>
<td>90</td>
<td>0.000000</td>
<td>35.1</td>
<td>0.000</td>
<td>1615.0</td>
<td>1449.2</td>
<td>165.8</td>
<td>12,070</td>
<td>2,001,206</td>
</tr>
<tr>
<td>7</td>
<td>-0.001565</td>
<td>90</td>
<td>0.000000</td>
<td>22.4</td>
<td>0.000</td>
<td>1630.0</td>
<td>1489.1</td>
<td>140.9</td>
<td>9,460</td>
<td>1,332,914</td>
</tr>
<tr>
<td>26</td>
<td>-0.001399</td>
<td>90</td>
<td>-0.001399</td>
<td>23.4</td>
<td>-0.033</td>
<td>1638.0</td>
<td>1512.3</td>
<td>125.7</td>
<td>18,456</td>
<td>2,319,919</td>
</tr>
<tr>
<td>20</td>
<td>-0.001399</td>
<td>90</td>
<td>-0.001399</td>
<td>72.3</td>
<td>-0.101</td>
<td>1640.0</td>
<td>1471.9</td>
<td>168.1</td>
<td>28,943</td>
<td>4,865,318</td>
</tr>
<tr>
<td>21</td>
<td>-0.001399</td>
<td>90</td>
<td>-0.001399</td>
<td>30.0</td>
<td>-0.042</td>
<td>1647.0</td>
<td>1506.0</td>
<td>141</td>
<td>30,370</td>
<td>4,282,170</td>
</tr>
<tr>
<td>22</td>
<td>-0.001794</td>
<td>41</td>
<td>-0.001354</td>
<td>77.2</td>
<td>-0.105</td>
<td>1595.0</td>
<td>1388.6</td>
<td>206.4</td>
<td>52,830</td>
<td>10,904,112</td>
</tr>
<tr>
<td>23</td>
<td>-0.001696</td>
<td>22</td>
<td>-0.001573</td>
<td>117.6</td>
<td>-0.185</td>
<td>1577.0</td>
<td>1314.5</td>
<td>262.5</td>
<td>14,429</td>
<td>3,787,613</td>
</tr>
<tr>
<td>24</td>
<td>-0.001555</td>
<td>7</td>
<td>-0.001543</td>
<td>109.1</td>
<td>-0.168</td>
<td>1575.0</td>
<td>1364.0</td>
<td>211</td>
<td>35,841</td>
<td>7,562,451</td>
</tr>
</tbody>
</table>

Total Estimated 1950 Boundary Flow = -6,025,283
### Ground Water Model

**Fixed Flow Boundary Estimates**  
**Western Boundary**  
**1950 G.W. Level - Layer 5**  
**Updated 07/18/05**

<table>
<thead>
<tr>
<th>Boundary Arc No.</th>
<th>Gradient Crossing Boundary (ft./ft.)</th>
<th>Gradient Angle Perpendicular To Boundary (deg)</th>
<th>Weighted Hyd. Cond. At Boundary (ft./d)</th>
<th>Weighted G.W. Velocity At Boundary (ft./d)</th>
<th>1950 Groundwater Elevation (ft.&gt;msl)</th>
<th>Layer 5 Elevation (ft.&gt;msl)</th>
<th>Saturated Thickness At Boundary (ft.)</th>
<th>Boundary Arc Length (ft.)</th>
<th>Boundary Flow Area (ft.2)</th>
<th>Boundary Flow (ft.3/d)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0.000891</td>
<td>0</td>
<td>0.000891</td>
<td>0.026</td>
<td>1902.0</td>
<td>1745.3</td>
<td>156.7</td>
<td>10,227</td>
<td>1,602,571</td>
<td>42,123</td>
</tr>
<tr>
<td>2</td>
<td>0.001382</td>
<td>45</td>
<td>0.000977</td>
<td>0.055</td>
<td>1903.0</td>
<td>1782.5</td>
<td>120.5</td>
<td>12,141</td>
<td>1,462,991</td>
<td>80,776</td>
</tr>
<tr>
<td>4</td>
<td>0.003388</td>
<td>26.5</td>
<td>0.003032</td>
<td>0.153</td>
<td>1920.0</td>
<td>1812.4</td>
<td>107.6</td>
<td>9,090</td>
<td>978,084</td>
<td>149,762</td>
</tr>
<tr>
<td>12</td>
<td>0.002875</td>
<td>18.4</td>
<td>0.002728</td>
<td>0.123</td>
<td>1932.0</td>
<td>1811.7</td>
<td>120.3</td>
<td>12,330</td>
<td>1,555,479</td>
<td>190,952</td>
</tr>
<tr>
<td>3</td>
<td>0.002964</td>
<td>26.5</td>
<td>0.002653</td>
<td>0.129</td>
<td>1930.0</td>
<td>1784.8</td>
<td>145.2</td>
<td>13,060</td>
<td>1,896,312</td>
<td>243,961</td>
</tr>
<tr>
<td>13</td>
<td>0.002341</td>
<td>34.5</td>
<td>0.001929</td>
<td>0.104</td>
<td>1955.0</td>
<td>1720.3</td>
<td>234.7</td>
<td>26,130</td>
<td>6,132,711</td>
<td>640,096</td>
</tr>
<tr>
<td>5</td>
<td>0.002145</td>
<td>19.3</td>
<td>0.002024</td>
<td>0.104</td>
<td>1985.0</td>
<td>1694.7</td>
<td>290.3</td>
<td>25,910</td>
<td>7,521,673</td>
<td>785,727</td>
</tr>
<tr>
<td>6</td>
<td>0.001969</td>
<td>17.6</td>
<td>0.001877</td>
<td>0.094</td>
<td>2008.0</td>
<td>1768.2</td>
<td>239.8</td>
<td>40,530</td>
<td>9,719,094</td>
<td>912,056</td>
</tr>
<tr>
<td>7</td>
<td>0.001607</td>
<td>45</td>
<td>0.001136</td>
<td>0.046</td>
<td>2003.0</td>
<td>1818.3</td>
<td>184.7</td>
<td>35,491</td>
<td>6,555,188</td>
<td>303,166</td>
</tr>
<tr>
<td>14</td>
<td>0.001786</td>
<td>45</td>
<td>0.001263</td>
<td>0.040</td>
<td>1982.0</td>
<td>1797.9</td>
<td>184.1</td>
<td>11,750</td>
<td>2,163,175</td>
<td>87,146</td>
</tr>
<tr>
<td>8</td>
<td>0.001684</td>
<td>0</td>
<td>0.001684</td>
<td>0.030</td>
<td>1972.0</td>
<td>1759.4</td>
<td>212.6</td>
<td>34,700</td>
<td>7,377,220</td>
<td>218,649</td>
</tr>
<tr>
<td>9</td>
<td>0.001684</td>
<td>0</td>
<td>0.001684</td>
<td>0.017</td>
<td>1978.0</td>
<td>1731.2</td>
<td>246.8</td>
<td>14,990</td>
<td>3,699,532</td>
<td>62,300</td>
</tr>
<tr>
<td>10</td>
<td>0.001752</td>
<td>27.6</td>
<td>0.001553</td>
<td>0.014</td>
<td>1978.0</td>
<td>1722.8</td>
<td>255.2</td>
<td>10,340</td>
<td>2,638,768</td>
<td>37,693</td>
</tr>
<tr>
<td>11</td>
<td>0.001906</td>
<td>56.9</td>
<td>0.001041</td>
<td>0.020</td>
<td>1960.0</td>
<td>1713.6</td>
<td>246.4</td>
<td>19,299</td>
<td>4,755,274</td>
<td>95,033</td>
</tr>
</tbody>
</table>

**Total Estimated 1950 Boundary Flow = 3,849,440**
<table>
<thead>
<tr>
<th>Transect</th>
<th>Site</th>
<th>( K_{v1} ) (ft/d)</th>
<th>( K_{v2} ) (ft/d)</th>
<th>Ecbase (mS/m)</th>
<th>( M_1 ) (ft)</th>
<th>( M_2 ) (ft)</th>
<th>( K_v ) (ft/d)</th>
<th>( L ) (ft)</th>
<th>( W ) (ft)</th>
<th>( M ) (ft)</th>
<th>( C ) (ft²/d/ft)</th>
</tr>
</thead>
<tbody>
<tr>
<td>A1</td>
<td>NC</td>
<td>78.7</td>
<td>0.056</td>
<td>35</td>
<td>13.8</td>
<td>6.8</td>
<td>0.169</td>
<td>1</td>
<td>1</td>
<td>20.6</td>
<td>0.0082</td>
</tr>
<tr>
<td>A2</td>
<td>MC</td>
<td>78.7</td>
<td>0.056</td>
<td>35</td>
<td>15.9</td>
<td>6.9</td>
<td>0.185</td>
<td>1</td>
<td>1</td>
<td>22.8</td>
<td>0.0081</td>
</tr>
<tr>
<td>A3</td>
<td>SC</td>
<td>78.7</td>
<td>0.056</td>
<td>35</td>
<td>12.4</td>
<td>13.3</td>
<td>0.108</td>
<td>1</td>
<td>1</td>
<td>25.7</td>
<td>0.0042</td>
</tr>
<tr>
<td>B1</td>
<td>NC</td>
<td>109.7</td>
<td>0.056</td>
<td>35</td>
<td>21.6</td>
<td>1.7</td>
<td>0.763</td>
<td>1</td>
<td>1</td>
<td>23.3</td>
<td>0.0327</td>
</tr>
<tr>
<td>B2</td>
<td>MC</td>
<td>109.7</td>
<td>0.056</td>
<td>35</td>
<td>10.8</td>
<td>9.5</td>
<td>0.120</td>
<td>1</td>
<td>1</td>
<td>20.3</td>
<td>0.0059</td>
</tr>
<tr>
<td>B3</td>
<td>SC</td>
<td>109.7</td>
<td>0.056</td>
<td>35</td>
<td>8.5</td>
<td>8.1</td>
<td>0.115</td>
<td>1</td>
<td>1</td>
<td>16.6</td>
<td>0.0069</td>
</tr>
</tbody>
</table>

Average Unit \( C = 0.0110 \) ft²/d per foot of river reach per foot of river width

Total Conductance \( C = 11.0 \) ft²/d per foot of river reach (using a river bed width of 1,000 ft.)

NOTES:
1. NC = North Channel
2. MC = Middle Channel
3. SC = South Channel
4. Site A is located in Sec 29, Twp 11N, Rng 8W, and is upstream from the BNSF railroad bridge over the Platte River near Grand Island
5. Site B is located in the NW 4 Sec 11, Twp 11N, Rng 8W, and is near the upstream from the Chapman Bridge near the intersection of S St and B Streets
6. \( K_{v1} \) = vertical hydraulic conductivity of river bed material with EC log < 35 mS/m
7. \( K_{v2} \) = vertical hydraulic conductivity of river bed material with EC log >= 35 mS/m
8. \( K_v \) = weighted vertical hydraulic conductivity for total river bed thickness \( M \)
9. \( L \) = river reach length (use 1.0 ft. for this calculation)
10. \( W \) = river bed width (use 1.0 ft. to compute the unit conductance.
    Apply total river bed width of 1,000 ft. to determine total bed conductance per linear foot of river reach between Hwy. 34 bridge and Chapman bridge
11. \( M_1 \) = thickness of the river bed material with EC log < 35 mS/m
    (based on CSD geoprobe resistivity log)
12. \( M_2 \) = thickness of the river bed material with EC log >= 35 mS/m
    (based on CSD geoprobe resistivity log)
13. \( M \) = total river bed thickness \( (M_1 + M_2) \)
14. Equation for computing river bed conductance
    \[ C = \frac{K_v \times L \times W}{M} \]
15. Equation for weighting vertical hydraulic conductivity:
    \[ K_v = \frac{M_1 \times K_{v1} + M_2 \times K_{v2}}{M} \]
APPENDIX C
GROUNDWATER LEVEL MAPS
DEPTH TO GROUNDWATER
FIGURE 7
GENERAL GROUNDWATER ELEVATION MODEL
FIGURE 8
GENERAL DEPTH OF GROUNDWATER BELOW LAND SURFACE